Phase DMA optimization and lower jitter

This commit is contained in:
F5OEO 2018-09-03 14:01:17 +00:00
parent bf77c5eb4b
commit 3da98b2e0f
6 changed files with 76 additions and 14 deletions

BIN
app/testrpitx Executable file

Binary file not shown.

View file

@ -127,7 +127,7 @@ int dma::start()
dma_reg.gpioreg[DMA_CONBLK_AD+channel*0x40]=mem_virt_to_phys((void*)cbarray ); // reset to beginning dma_reg.gpioreg[DMA_CONBLK_AD+channel*0x40]=mem_virt_to_phys((void*)cbarray ); // reset to beginning
dma_reg.gpioreg[DMA_DEBUG+channel*0x40] = 7; // clear debug error flags dma_reg.gpioreg[DMA_DEBUG+channel*0x40] = 7; // clear debug error flags
usleep(100); usleep(100);
dma_reg.gpioreg[DMA_CS+channel*0x40] = DMA_CS_PRIORITY(15) | DMA_CS_PANIC_PRIORITY(15) | DMA_CS_DISDEBUG |DMA_CS_ACTIVE; dma_reg.gpioreg[DMA_CS+channel*0x40] = DMA_CS_PRIORITY(7) | DMA_CS_PANIC_PRIORITY(7) | DMA_CS_DISDEBUG |DMA_CS_ACTIVE;
return 0; return 0;
} }
@ -235,7 +235,7 @@ int bufferdma::GetUserMemIndex()
int IndexAvailable=-1; int IndexAvailable=-1;
//fprintf(stderr,"Avail=%d\n",GetBufferAvailable()); //fprintf(stderr,"Avail=%d\n",GetBufferAvailable());
if(GetBufferAvailable()) if(GetBufferAvailable()>0)
{ {
IndexAvailable=last_sample+1; IndexAvailable=last_sample+1;
if(IndexAvailable>=(int)buffersize) IndexAvailable=0; if(IndexAvailable>=(int)buffersize) IndexAvailable=0;

View file

@ -798,7 +798,7 @@ int pcmgpio::SetPrediv(int predivisor) //Carefull we use a 10 fixe divisor for n
usleep(100); usleep(100);
gpioreg[PCM_CS_A] |= 1 << 4 | 1 << 3; // Clear FIFOs gpioreg[PCM_CS_A] |= 1 << 4 | 1 << 3; // Clear FIFOs
usleep(100); usleep(100);
gpioreg[PCM_DREQ_A] = 64 << 24 | 64 << 8; //TX Fifo PCM=64 DMA Req when one slot is free? gpioreg[PCM_DREQ_A] = 64 << 24 | 64 << 8; //TX Fifo PCM=64 DMA Req when one slot is free? : Fixme
usleep(100); usleep(100);
gpioreg[PCM_CS_A] |= 1 << 9; // Enable DMA gpioreg[PCM_CS_A] |= 1 << 9; // Enable DMA
usleep(100); usleep(100);

View file

@ -161,7 +161,7 @@ void iqdmasync::SetIQSample(uint32_t Index,std::complex<float> sample,int Harmon
} }
else else
{ {
sampletab[Index*registerbysample+2]=(Originfsel & ~(7 << 12)) | (4 << 12); //Alternate is CLK sampletab[Index*registerbysample+2]=(Originfsel & ~(7 << 12)) | (4 << 12); //Alternate is CLK : Fixme : do not work with clk2
} }
//fprintf(stderr,"amp%f %d\n",mydsp.amplitude,IntAmplitudePAD); //fprintf(stderr,"amp%f %d\n",mydsp.amplitude,IntAmplitudePAD);

View file

@ -19,15 +19,20 @@ This program is free software: you can redistribute it and/or modify
#include "stdio.h" #include "stdio.h"
#include "phasedmasync.h" #include "phasedmasync.h"
#include <unistd.h> #include <unistd.h>
#include <time.h>
phasedmasync::phasedmasync(uint64_t TuneFrequency,uint32_t SampleRate,int NumberOfPhase,int Channel,uint32_t FifoSize):bufferdma(Channel,FifoSize,2,1) // Number of phase between 2 and 16
//Stable tune for this pwm mode is up to 90MHZ
phasedmasync::phasedmasync(uint64_t TuneFrequency,uint32_t SampleRateIn,int NumberOfPhase,int Channel,uint32_t FifoSize):bufferdma(Channel,FifoSize,2,1) // Number of phase between 2 and 16
{ {
SampleRate=SampleRateIn;
SetMode(pwm1pinrepeat); SetMode(pwm1pinrepeat);
pwmgpio::SetPllNumber(clk_plla,0); pwmgpio::SetPllNumber(clk_plla,0);
tunefreq=TuneFrequency*NumberOfPhase; tunefreq=TuneFrequency*NumberOfPhase;
#define MAX_PWM_RATE 360000000
if(tunefreq>MAX_PWM_RATE) fprintf(stderr,"Critical error : Frequency to high > %d\n",MAX_PWM_RATE/NumberOfPhase);
if((NumberOfPhase==2)||(NumberOfPhase==4)||(NumberOfPhase==8)||(NumberOfPhase==16)||(NumberOfPhase==32)) if((NumberOfPhase==2)||(NumberOfPhase==4)||(NumberOfPhase==8)||(NumberOfPhase==16)||(NumberOfPhase==32))
NumbPhase=NumberOfPhase; NumbPhase=NumberOfPhase;
else else
@ -49,7 +54,7 @@ phasedmasync::phasedmasync(uint64_t TuneFrequency,uint32_t SampleRate,int Number
pwmgpio::clk.gpioreg[PWMCLK_CNTL]= 0x5A000000 | (pwmgpio::Mash << 9) | ((clkgpio::PllFixDivider)<<12)| pwmgpio::pllnumber|(1 << 4) ; //4 is START CLK pwmgpio::clk.gpioreg[PWMCLK_CNTL]= 0x5A000000 | (pwmgpio::Mash << 9) | ((clkgpio::PllFixDivider)<<12)| pwmgpio::pllnumber|(1 << 4) ; //4 is START CLK
usleep(100); usleep(100);
pwmgpio::SetPrediv(32); //SetMode should be called before pwmgpio::SetPrediv(NumberOfPhase); //Originaly 32 but To minimize jitter , we set minimal buffer to repeat
@ -77,7 +82,7 @@ phasedmasync::phasedmasync(uint64_t TuneFrequency,uint32_t SampleRate,int Number
for(int i=0;i<NumbPhase;i++) for(int i=0;i<NumbPhase;i++)
{ {
TabPhase[i]=ZeroPhase; TabPhase[i]=ZeroPhase;
fprintf(stderr,"Phase[%d]=%x\n",i,TabPhase[i]); //fprintf(stderr,"Phase[%d]=%x\n",i,TabPhase[i]);
ZeroPhase=(ZeroPhase<<1)|(ZeroPhase>>31); ZeroPhase=(ZeroPhase<<1)|(ZeroPhase>>31);
} }
@ -108,7 +113,7 @@ void phasedmasync::SetDmaAlgo()
cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX); cbp->info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP |BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(DREQ_PCM_TX);
cbp->src = mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM cbp->src = mem_virt_to_phys(&usermem[(samplecnt+1)*registerbysample]);//mem_virt_to_phys(cbarray); // Data is not important as we use it only to feed the PWM
cbp->dst = 0x7E000000 + (PCM_FIFO_A<<2) + PCM_BASE ; cbp->dst = 0x7E000000 + (PCM_FIFO_A<<2) + PCM_BASE ;
cbp->length = 4; cbp->length = 4;
cbp->stride = 0; cbp->stride = 0;
@ -125,10 +130,67 @@ void phasedmasync::SetDmaAlgo()
void phasedmasync::SetPhase(uint32_t Index,int Phase) void phasedmasync::SetPhase(uint32_t Index,int Phase)
{ {
Index=Index%buffersize; Index=Index%buffersize;
Phase=Phase%NumbPhase; Phase=(Phase+NumbPhase)%NumbPhase;
sampletab[Index]=TabPhase[Phase]; sampletab[Index]=TabPhase[Phase];
PushSample(Index); PushSample(Index);
} }
void phasedmasync::SetPhaseSamples(int *sample,size_t Size)
{
size_t NbWritten=0;
int OSGranularity=100;
long int start_time;
long time_difference=0;
struct timespec gettime_now;
int debug=1;
while(NbWritten<Size)
{
if(debug>0)
{
clock_gettime(CLOCK_REALTIME, &gettime_now);
start_time = gettime_now.tv_nsec;
}
int Available=GetBufferAvailable();
//printf("Available before=%d\n",Available);
int TimeToSleep=1e6*((int)buffersize*3/4-Available)/(float)SampleRate/*-OSGranularity*/; // Sleep for theorically fill 3/4 of Fifo
if(TimeToSleep>0)
{
//fprintf(stderr,"buffer size %d Available %d SampleRate %d Sleep %d\n",buffersize,Available,SampleRate,TimeToSleep);
usleep(TimeToSleep);
}
else
{
//fprintf(stderr,"No Sleep %d\n",TimeToSleep);
//sched_yield();
}
if(debug>0)
{
clock_gettime(CLOCK_REALTIME, &gettime_now);
time_difference = gettime_now.tv_nsec - start_time;
if(time_difference<0) time_difference+=1E9;
//fprintf(stderr,"Available %d Measure samplerate=%d\n",GetBufferAvailable(),(int)((GetBufferAvailable()-Available)*1e9/time_difference));
debug--;
}
Available=GetBufferAvailable();
int Index=GetUserMemIndex();
int ToWrite=((int)Size-(int)NbWritten)<Available?Size-NbWritten:Available;
//printf("Available after=%d Timetosleep %d To Write %d\n",Available,TimeToSleep,ToWrite);
for(int i=0;i<ToWrite;i++)
{
SetPhase(Index+i,sample[NbWritten++]);
}
}
}

View file

@ -10,13 +10,13 @@ class phasedmasync:public bufferdma,public clkgpio,public pwmgpio,public pcmgpio
protected: protected:
uint64_t tunefreq; uint64_t tunefreq;
int NumbPhase=2; int NumbPhase=2;
uint32_t SampleRate;
uint32_t TabPhase[32];//32 is Max Phase uint32_t TabPhase[32];//32 is Max Phase
public: public:
phasedmasync(uint64_t TuneFrequency,uint32_t SampleRate,int NumberOfPhase,int Channel,uint32_t FifoSize); phasedmasync(uint64_t TuneFrequency,uint32_t SampleRateIn,int NumberOfPhase,int Channel,uint32_t FifoSize);
~phasedmasync(); ~phasedmasync();
void SetDmaAlgo(); void SetDmaAlgo();
void SetPhase(uint32_t Index,int Phase); void SetPhase(uint32_t Index,int Phase);
void SetPhaseSamples(int *sample,size_t Size);
}; };
#endif #endif