Extend fundamental frequency up to 1GHZ using PDIV PLL. Rewrite divider choice

This commit is contained in:
F5OEO 2018-11-26 14:06:46 +00:00
parent 6148190afa
commit 1dac6e6948

View file

@ -169,7 +169,7 @@ int clkgpio::SetFrequency(double Frequency)
if ((FreqDivider > 4096) || (FreqDivider < 2)) if ((FreqDivider > 4096) || (FreqDivider < 2))
fprintf(stderr, "Frequency out of range\n"); fprintf(stderr, "Frequency out of range\n");
printf("DIV/FRAC %u/%u \n", FreqDivider, FreqFractionnal); printf("DIV/FRAC %u/%u \n", FreqDivider, FreqFractionnal);
SetClkDivFrac(FreqDivider, FreqFractionnal); SetClkDivFrac(FreqDivider, FreqFractionnal);
} }
@ -197,67 +197,66 @@ int clkgpio::ComputeBestLO(uint64_t Frequency, int Bandwidth)
// Choose an integer divider for GPCLK0 // Choose an integer divider for GPCLK0
// //
// There may be improvements possible to this algorithm. // There may be improvements possible to this algorithm.
double xtal_freq_recip = 1.0 / 19.2e6; // todo PPM correction // Constants taken https://github.com/raspberrypi/linux/blob/ffd7bf4085b09447e5db96edd74e524f118ca3fe/drivers/clk/bcm/clk-bcm2835.c#L1763
#define MIN_PLL_RATE 400e6
#define MIN_PLL_RATE_USE_PDIV 1700e6
#define MAX_PLL_RATE 3e9
#define XTAL_RATE 19.2e6
double xtal_freq_recip = 1.0 / XTAL_RATE; // todo PPM correction
int best_divider = 0; int best_divider = 0;
int solution_count = 0; int solution_count = 0;
//printf("carrier:%3.2f ",carrier_freq/1e6); //printf("carrier:%3.2f ",carrier_freq/1e6);
int divider, min_int_multiplier, max_int_multiplier, fom, int_multiplier, best_fom = 0; int divider=0, min_int_multiplier, max_int_multiplier, fom, int_multiplier, best_fom = 0;
double frac_multiplier;
best_divider = 0; best_divider = 0;
for (divider = 2; divider < 4096; divider++)//1 is allowed only for MASH=0 bool cross_boundary=false;
if(Frequency<MIN_PLL_RATE/4095)
{ {
if (Frequency * divider < 600e6) fprintf(stderr, "Frequency too low !!!!!!\n");
continue; // widest accepted frequency range return -1;
if (Frequency * divider > 1700e6) // By Experiment on Rpi3B }
break; if(Frequency*2>MAX_PLL_RATE)
{
max_int_multiplier = ((int)((double)(Frequency + Bandwidth) * divider * xtal_freq_recip)); fprintf(stderr, "Frequency too high !!!!!!\n");
min_int_multiplier = ((int)((double)(Frequency - Bandwidth) * divider * xtal_freq_recip)); return -1;
if (min_int_multiplier != max_int_multiplier) }
if(Frequency*2>MIN_PLL_RATE_USE_PDIV)
best_divider=1; // We will use PREDIV 2 for PLL
else
{
for (divider = 4095; divider > 1; divider--)//1 is allowed only for MASH=0
{ {
//fprintf(stderr,"Warning : cross boundary frequency\n"); if (Frequency * divider < MIN_PLL_RATE)
continue; // don't cross integer boundary continue; // widest accepted frequency range
} if (Frequency * divider > MIN_PLL_RATE_USE_PDIV) // By Experiment on Rpi3B
// continue; // don't cross integer boundary {
continue;
}
max_int_multiplier = ((int)((double)(Frequency + Bandwidth) * divider * xtal_freq_recip));
min_int_multiplier = ((int)((double)(Frequency - Bandwidth) * divider * xtal_freq_recip));
if (min_int_multiplier != max_int_multiplier)
{
//fprintf(stderr,"Warning : cross boundary frequency\n");
best_divider=divider;
cross_boundary=true;
continue; // don't cross integer boundary
}
else
{
cross_boundary=false;
best_divider=divider;
break;
}
solution_count++; // if we make it here the solution is acceptable,
fom = 0; // but we want a good solution
if (Frequency * divider > 900e6)
fom++; // prefer freqs closer to 1000
if (Frequency * divider < 1100e6)
fom++;
if (Frequency * divider > 800e6)
fom++; // accepted frequency range
if (Frequency * divider < 1200e6)
fom++;
frac_multiplier = ((double)(Frequency)*divider * xtal_freq_recip);
int_multiplier = (int)frac_multiplier;
frac_multiplier = frac_multiplier - int_multiplier;
//if ((int_multiplier % 2) == 0)
// fom++;
//if (((frac_multiplier > 0.7) && (frac_multiplier < 1.0))||((frac_multiplier > 0.0) && (frac_multiplier < 0.3)))
if (((frac_multiplier > 0.2) && (frac_multiplier < 0.3))||((frac_multiplier > 0.7) && (frac_multiplier < 0.8)))
//if (((frac_multiplier > 0.4) && (frac_multiplier < 0.6)))
fom += 2; // prefer mulipliers away from integer boundaries
//if( divider%2 == 1 ) fom+=2; // prefer odd dividers
// Even and odd dividers could have different harmonic content,
// but the latest measurements have shown no significant difference.
//printf("Try multiplier:%f divider:%d VCO: %4.1fMHz Spurious %f\n",Frequency*divider*xtal_freq_recip,divider,(double)Frequency*divider/1e6,frac_multiplier*19.2e6/(double)divider);
if (fom > best_fom)
{
best_fom = fom;
best_divider = divider;
} }
} }
if (solution_count > 0) if (best_divider!=0)
{ {
PllFixDivider = best_divider; PllFixDivider = best_divider;
fprintf(stderr, " multiplier:%f divider:%d VCO: %4.1fMHz Spurious %f \n", Frequency * best_divider * xtal_freq_recip, best_divider, (double)Frequency * best_divider / 1e6,frac_multiplier*xtal_freq_recip/(double)divider); if(cross_boundary) fprintf(stderr,"Warning : cross boundary frequency\n");
fprintf(stderr, "Found solution : divider:%d VCO: %4.1fMHz\n", best_divider,Frequency * best_divider * xtal_freq_recip);
return 0; return 0;
} }
else else
@ -308,9 +307,44 @@ int clkgpio::SetCenterFrequency(uint64_t Frequency, int Bandwidth)
fprintf(stderr, "Master PLLC Locked\n"); fprintf(stderr, "Master PLLC Locked\n");
else else
fprintf(stderr, "Warning ! Master PLLC NOT Locked !!!!\n"); fprintf(stderr, "Warning ! Master PLLC NOT Locked !!!!\n");
SetClkDivFrac(PllFixDivider, 0x0); // NO MASH !!!!
usleep(100);
if(PllFixDivider==1)
{
//We will use PDIV by 2, means like we have a 2 times more
SetClkDivFrac(2, 0x0); // NO MASH !!!!
}
else
{
SetClkDivFrac(PllFixDivider, 0x0); // NO MASH !!!!
}
// Apply PREDIV for PLL or not
uint32_t ana[4];
for (int i = 3; i >= 0; i--)
{
ana[i] = gpioreg[(A2W_PLLC_ANA0 ) + i];
}
if(PllFixDivider==1)
{
fprintf(stderr,"Use PLL Prediv\n");
ana[1] |= (1 << 14); // use prediv means Frequency*2
}
else
{
ana[1]&=~(1<<14); // No use prediv means Frequency
}
for (int i = 3; i >= 0; i--)
{
gpioreg[(A2W_PLLC_ANA0 ) + i] = (0x5A << 24) | ana[i];
usleep(100);
}
usleep(100); usleep(100);
gpioreg[GPCLK_CNTL] = 0x5A000000 | (Mash << 9) | pllnumber | (1 << 4); //4 is START CLK gpioreg[GPCLK_CNTL] = 0x5A000000 | (Mash << 9) | pllnumber | (1 << 4); //4 is START CLK
usleep(100); usleep(100);
@ -362,24 +396,11 @@ void clkgpio::SetAdvancedPllMode(bool Advanced)
SetPllNumber(clk_pllc, 0); // Use PLL_C , Do not USE MASH which generates spurious SetPllNumber(clk_pllc, 0); // Use PLL_C , Do not USE MASH which generates spurious
//gpioreg[CM_PLLA] = 0x5A00022A; // Enable PllA_PER
gpioreg[CM_PLLC] = 0x5A00022A; // Enable PllA_PER gpioreg[CM_PLLC] = 0x5A00022A; // Enable PllC_PER
usleep(100); usleep(100);
uint32_t ana[4];
for (int i = 3; i >= 0; i--)
{
ana[i] = gpioreg[(A2W_PLLC_ANA0 ) + i];
}
ana[1]&=~(1<<14); // No use prediv means Frequency
//ana[1] |= (1 << 14); // use prediv means Frequency*2
for (int i = 3; i >= 0; i--)
{
gpioreg[(A2W_PLLC_ANA0 ) + i] = (0x5A << 24) | ana[i];
}
usleep(100);
gpioreg[PLLC_CORE0] = 0x5A000000|(1<<8);//Disable gpioreg[PLLC_CORE0] = 0x5A000000|(1<<8);//Disable
gpioreg[PLLC_PER] = 0x5A000001; // Divisor gpioreg[PLLC_PER] = 0x5A000001; // Divisor
usleep(100); usleep(100);