ft8_lib/ft8/decode.cpp
2019-11-22 13:45:42 +02:00

326 lines
12 KiB
C++

#include "decode.h"
#include <math.h>
#include "constants.h"
namespace ft8 {
static float max2(float a, float b);
static float max4(float a, float b, float c, float d);
static void heapify_down(Candidate *heap, int heap_size);
static void heapify_up(Candidate *heap, int heap_size);
static void decode_symbol(const uint8_t *power, const uint8_t *code_map, int bit_idx, float *log174);
static void decode_multi_symbols(const uint8_t *power, int num_bins, int n_syms, const uint8_t *code_map, int bit_idx, float *log174);
static int get_index(const MagArray *power, int block, int time_sub, int freq_sub, int bin) {
return ((((block * power->time_osr) + time_sub) * power->freq_osr + freq_sub) * power->num_bins) + bin;
}
Monitor1Base::Monitor1Base(float sample_rate, int time_osr, int freq_osr, float fmin, float fmax) {
int block_size = (int)(0.5f + sample_rate / ft8::FSK_dev); // Samples per FSK tone
nfft = block_size * freq_osr; // FFT over symbols with frequency oversampling
int bin1 = (block_size * fmin) / sample_rate;
int bin2 = (block_size * fmax) / sample_rate;
power.time_osr = time_osr;
power.freq_osr = freq_osr;
power.num_bins = bin2 - bin1;
power.num_blocks = 0;
}
void Monitor1Base::feed(const float *frame) {
// Fill the first 3/4 of analysis frame
for (int i = 0; i < 3 * nfft / 4; ++i) {
fft_frame[i] = window_fn[i] * last_frame[i];
}
// Shift the frame history
for (int i = 0; i < nfft / 2; ++i) {
last_frame[i] = last_frame[i + nfft / 4];
}
// Now fill the last_frame array
for (int i = 0; i < nfft / 4; ++i) {
last_frame[i + nfft / 2] = frame[i];
}
// Fill the last 1/4 of analysis frame
for (int i = 3 * nfft / 4, j = nfft / 2; i < nfft; ++i, ++j) {
fft_frame[i] = window_fn[i] * last_frame[j];
}
fft_forward(fft_frame, freqdata);
for (int freq_sub = 0; freq_sub < power.freq_osr; ++freq_sub) {
for (int i = 0; i < power.num_bins; i += power.freq_osr) {
float mag2 = std::norm(freqdata[i]); // re^2 + im^2
float mag_db = 10.0f * log10f(1E-12f + mag2);
int scaled = (int)(2 * (mag_db + 120));
power.mag[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled);
++offset;
}
}
if (++time_sub >= power.time_osr) {
time_sub = 0;
++power.num_blocks;
}
}
// Localize top N candidates in frequency and time according to their sync strength (looking at Costas symbols)
// We treat and organize the candidate list as a min-heap (empty initially).
int find_sync(const MagArray *power, const uint8_t *sync_map, int num_candidates, Candidate *heap, int min_score) {
int heap_size = 0;
int num_alt = power->time_osr * power->freq_osr;
// Here we allow time offsets that exceed signal boundaries, as long as we still have all data bits.
// I.e. we can afford to skip the first 7 or the last 7 Costas symbols, as long as we track how many
// sync symbols we included in the score, so the score is averaged.
for (int time_sub = 0; time_sub < power->time_osr; ++time_sub) {
for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub) {
for (int time_offset = -7; time_offset < power->num_blocks - ft8::NN + 7; ++time_offset) {
for (int freq_offset = 0; freq_offset < power->num_bins - 8; ++freq_offset) {
int score = 0;
// Compute average score over sync symbols (m+k = 0-7, 36-43, 72-79)
int num_symbols = 0;
for (int m = 0; m <= 72; m += 36) {
// Iterate over 7 Costas synchronisation symbols
for (int k = 0; k < 7; ++k) {
int n = time_offset + k + m;
// Check for time boundaries
if (n < 0) continue;
if (n >= power->num_blocks) break;
int offset = get_index(power, n, time_sub, freq_sub, freq_offset);
const uint8_t *p8 = power->mag + offset;
// Weighted difference between the expected and all other symbols
// Does not work as well as the alternative score below
// score += 8 * p8[sync_map[k]] -
// p8[0] - p8[1] - p8[2] - p8[3] -
// p8[4] - p8[5] - p8[6] - p8[7];
// Check only the neighbors of the expected symbol frequency- and time-wise
int sm = sync_map[k]; // Index of the expected bin
if (sm > 0) {
// look at one frequency bin lower
score += p8[sm] - p8[sm - 1];
}
if (sm < 7) {
// look at one frequency bin higher
score += p8[sm] - p8[sm + 1];
}
if (k > 0 && n - 1 >= 0) {
// look one symbol back in time
score += p8[sm] - p8[sm - num_alt * power->num_bins];
}
if (k < 6 && n + 1 < power->num_blocks) {
// look one symbol forward in time
score += p8[sm] - p8[sm + num_alt * power->num_bins];
}
++num_symbols;
}
}
if (num_symbols > 0)
score /= num_symbols;
if (score < min_score) continue;
// If the heap is full AND the current candidate is better than
// the worst in the heap, we remove the worst and make space
if (heap_size == num_candidates && score > heap[0].score) {
heap[0] = heap[heap_size - 1];
--heap_size;
heapify_down(heap, heap_size);
}
// If there's free space in the heap, we add the current candidate
if (heap_size < num_candidates) {
heap[heap_size].score = score;
heap[heap_size].time_offset = time_offset;
heap[heap_size].freq_offset = freq_offset;
heap[heap_size].time_sub = time_sub;
heap[heap_size].freq_sub = freq_sub;
++heap_size;
heapify_up(heap, heap_size);
}
}
}
}
}
return heap_size;
}
// Compute log likelihood log(p(1) / p(0)) of 174 message bits
// for later use in soft-decision LDPC decoding
void extract_likelihood(const MagArray *power, const Candidate & cand, const uint8_t *code_map, float *log174) {
int num_alt = power->time_osr * power->freq_osr;
// int offset = (cand.time_offset * num_alt + cand.time_sub * power->freq_osr + cand.freq_sub) * power->num_bins + cand.freq_offset;
int offset = get_index(power, cand.time_offset, cand.time_sub, cand.freq_sub, cand.freq_offset);
// Go over FSK tones and skip Costas sync symbols
const int n_syms = 1;
const int n_bits = 3 * n_syms;
const int n_tones = (1 << n_bits);
for (int k = 0; k < ft8::ND; k += n_syms) {
// Add either 7 or 14 extra symbols to account for sync
int sym_idx = (k < ft8::ND / 2) ? (k + 7) : (k + 14);
int bit_idx = 3 * k;
// Index of the 8 bins of the current symbol
int sym_offset = offset + sym_idx * num_alt * power->num_bins;
decode_symbol(power->mag + sym_offset, code_map, bit_idx, log174);
// decode_multi_symbols(power->mag + sym_offset, power->num_bins, n_syms, code_map, bit_idx, log174);
}
// Compute the variance of log174
float sum = 0;
float sum2 = 0;
float inv_n = 1.0f / ft8::N;
for (int i = 0; i < ft8::N; ++i) {
sum += log174[i];
sum2 += log174[i] * log174[i];
}
float variance = (sum2 - sum * sum * inv_n) * inv_n;
// Normalize log174 such that sigma = 2.83 (Why? It's in WSJT-X, ft8b.f90)
// Seems to be 2.83 = sqrt(8). Experimentally sqrt(16) works better.
float norm_factor = sqrtf(16.0f / variance);
for (int i = 0; i < ft8::N; ++i) {
log174[i] *= norm_factor;
}
}
static float max2(float a, float b) {
return (a >= b) ? a : b;
}
static float max4(float a, float b, float c, float d) {
return max2(max2(a, b), max2(c, d));
}
static void heapify_down(Candidate *heap, int heap_size) {
// heapify from the root down
int current = 0;
while (true) {
int largest = current;
int left = 2 * current + 1;
int right = left + 1;
if (left < heap_size && heap[left].score < heap[largest].score) {
largest = left;
}
if (right < heap_size && heap[right].score < heap[largest].score) {
largest = right;
}
if (largest == current) {
break;
}
Candidate tmp = heap[largest];
heap[largest] = heap[current];
heap[current] = tmp;
current = largest;
}
}
static void heapify_up(Candidate *heap, int heap_size) {
// heapify from the last node up
int current = heap_size - 1;
while (current > 0) {
int parent = (current - 1) / 2;
if (heap[current].score >= heap[parent].score) {
break;
}
Candidate tmp = heap[parent];
heap[parent] = heap[current];
heap[current] = tmp;
current = parent;
}
}
// Compute unnormalized log likelihood log(p(1) / p(0)) of 3 message bits (1 FSK symbol)
static void decode_symbol(const uint8_t *power, const uint8_t *code_map, int bit_idx, float *log174) {
// Cleaned up code for the simple case of n_syms==1
float s2[8];
for (int j = 0; j < 8; ++j) {
s2[j] = (float)power[code_map[j]];
}
log174[bit_idx + 0] = max4(s2[4], s2[5], s2[6], s2[7]) - max4(s2[0], s2[1], s2[2], s2[3]);
log174[bit_idx + 1] = max4(s2[2], s2[3], s2[6], s2[7]) - max4(s2[0], s2[1], s2[4], s2[5]);
log174[bit_idx + 2] = max4(s2[1], s2[3], s2[5], s2[7]) - max4(s2[0], s2[2], s2[4], s2[6]);
}
// Compute unnormalized log likelihood log(p(1) / p(0)) of bits corresponding to several FSK symbols at once
static void decode_multi_symbols(const uint8_t *power, int num_bins, int n_syms, const uint8_t *code_map, int bit_idx, float *log174) {
// The following section implements what seems to be multiple-symbol decode at one go,
// corresponding to WSJT-X's ft8b.f90. Experimentally found not to be any better than
// 1-symbol decode.
const int n_bits = 3 * n_syms;
const int n_tones = (1 << n_bits);
float s2[n_tones];
for (int j = 0; j < n_tones; ++j) {
int j1 = j & 0x07;
if (n_syms == 1) {
s2[j] = (float)power[code_map[j1]];
continue;
}
int j2 = (j >> 3) & 0x07;
if (n_syms == 2) {
s2[j] = (float)power[code_map[j2]];
s2[j] += (float)power[code_map[j1] + 4 * num_bins];
continue;
}
int j3 = (j >> 6) & 0x07;
s2[j] = (float)power[code_map[j3]];
s2[j] += (float)power[code_map[j2] + 4 * num_bins];
s2[j] += (float)power[code_map[j1] + 8 * num_bins];
}
// No need to go back to linear scale any more. Works better in dB.
// for (int j = 0; j < n_tones; ++j) {
// s2[j] = powf(10.0f, 0.1f * s2[j]);
// }
// Extract bit significance (and convert them to float)
// 8 FSK tones = 3 bits
for (int i = 0; i < n_bits; ++i) {
if (bit_idx + i >= ft8::N) {
// Respect array size
break;
}
uint16_t mask = (n_tones >> (i + 1));
float max_zero = -1000, max_one = -1000;
for (int n = 0; n < n_tones; ++n) {
if (n & mask) {
max_one = max2(max_one, s2[n]);
}
else {
max_zero = max2(max_zero, s2[n]);
}
}
log174[bit_idx + i] = max_one - max_zero;
}
}
} // namespace