#include #include #include #include #include "ft8/unpack_v2.h" #include "ft8/ldpc.h" #include "ft8/decode.h" #include "ft8/constants.h" #include "common/wave.h" #include "fft/kiss_fftr.h" const int kMax_candidates = 100; const int kLDPC_iterations = 20; const int kMax_decoded_messages = 50; const int kMax_message_length = 20; void usage() { printf("Decode a 15-second WAV file.\n"); } float hann_i(int i, int N) { float x = sinf((float)M_PI * i / (N - 1)); return x*x; } float hamming_i(int i, int N) { const float a0 = (float)25 / 46; const float a1 = 1 - a0; float x1 = cosf(2 * (float)M_PI * i / (N - 1)); return a0 - a1*x1; } float blackman_i(int i, int N) { const float alpha = 0.16f; // or 2860/18608 const float a0 = (1 - alpha) / 2; const float a1 = 1.0f / 2; const float a2 = alpha / 2; float x1 = cosf(2 * (float)M_PI * i / (N - 1)); //float x2 = cosf(4 * (float)M_PI * i / (N - 1)); float x2 = 2*x1*x1 - 1; // Use double angle formula return a0 - a1*x1 + a2*x2; } // Compute FFT magnitudes (log power) for each timeslot in the signal void extract_power(const float signal[], int num_blocks, int num_bins, uint8_t power[]) { const int block_size = 2 * num_bins; // Average over 2 bins per FSK tone const int nfft = 2 * block_size; // We take FFT of two blocks, advancing by one float window[nfft]; for (int i = 0; i < nfft; ++i) { window[i] = blackman_i(i, nfft); } size_t fft_work_size; kiss_fftr_alloc(nfft, 0, 0, &fft_work_size); printf("N_FFT = %d\n", nfft); printf("FFT work area = %lu\n", fft_work_size); void *fft_work = malloc(fft_work_size); kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size); // Currently bit unsure about the scaling factor of kiss FFT int offset = 0; float fft_norm = 1.0f / nfft / sqrtf(nfft); float max_mag = -100.0f; for (int i = 0; i < num_blocks; ++i) { // Loop over two possible time offsets (0 and block_size/2) for (int time_sub = 0; time_sub <= block_size/2; time_sub += block_size/2) { kiss_fft_scalar timedata[nfft]; kiss_fft_cpx freqdata[nfft/2 + 1]; float mag_db[nfft/2 + 1]; // Extract windowed signal block for (int j = 0; j < nfft; ++j) { timedata[j] = window[j] * signal[(i * block_size) + (j + time_sub)]; } kiss_fftr(fft_cfg, timedata, freqdata); // Compute log magnitude in decibels for (int j = 0; j < nfft/2 + 1; ++j) { float mag2 = fft_norm * (freqdata[j].i * freqdata[j].i + freqdata[j].r * freqdata[j].r); mag_db[j] = 10.0f * log10f(1E-10f + mag2); } // Loop over two possible frequency bin offsets (for averaging) for (int freq_sub = 0; freq_sub < 2; ++freq_sub) { for (int j = 0; j < num_bins; ++j) { float db1 = mag_db[j * 2 + freq_sub]; float db2 = mag_db[j * 2 + freq_sub + 1]; float db = (db1 + db2) / 2; // Scale decibels to unsigned 8-bit range and clamp the value int scaled = (int)(2 * (db + 100)); power[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled); ++offset; if (db > max_mag) max_mag = db; } } } } printf("Max magnitude: %.1f dB\n", max_mag); free(fft_work); } void print_tones(const uint8_t *code_map, const float *log174) { for (int k = 0; k < 3 * FT8_ND; k += 3) { uint8_t max = 0; if (log174[k + 0] > 0) max |= 4; if (log174[k + 1] > 0) max |= 2; if (log174[k + 2] > 0) max |= 1; printf("%d", code_map[max]); } printf("\n"); } int main(int argc, char **argv) { // Expect one command-line argument if (argc < 2) { usage(); return -1; } const char *wav_path = argv[1]; int sample_rate = 12000; int num_samples = 15 * sample_rate; float signal[num_samples]; int rc = load_wav(signal, num_samples, sample_rate, wav_path); if (rc < 0) { return -1; } const float fsk_dev = 6.25f; // tone deviation in Hz and symbol rate // Compute DSP parameters that depend on the sample rate const int num_bins = (int)(sample_rate / (2 * fsk_dev)); const int block_size = 2 * num_bins; const int num_blocks = (num_samples - (block_size/2) - block_size) / block_size; printf("%d blocks, %d bins\n", num_blocks, num_bins); // Compute FFT over the whole signal and store it uint8_t power[num_blocks * 4 * num_bins]; extract_power(signal, num_blocks, num_bins, power); // Find top candidates by Costas sync score and localize them in time and frequency Candidate candidate_list[kMax_candidates]; int num_candidates = find_sync(power, num_blocks, num_bins, kCostas_map, kMax_candidates, candidate_list); // TODO: sort the candidates by strongest sync first? // Go over candidates and attempt to decode messages char decoded[kMax_decoded_messages][kMax_message_length]; int num_decoded = 0; for (int idx = 0; idx < num_candidates; ++idx) { Candidate &cand = candidate_list[idx]; float freq_hz = (cand.freq_offset + cand.freq_sub / 2.0f) * fsk_dev; float time_sec = (cand.time_offset + cand.time_sub / 2.0f) / fsk_dev; float log174[FT8_N]; extract_likelihood(power, num_bins, cand, kGray_map, log174); // bp_decode() produces better decodes, uses way less memory uint8_t plain[FT8_N]; int n_errors = 0; bp_decode(log174, kLDPC_iterations, plain, &n_errors); //ldpc_decode(log174, kLDPC_iterations, plain, &n_errors); if (n_errors > 0) { //printf("ldpc_decode() = %d\n", n_errors); continue; } // Extract payload + CRC (first FT8_K bits) uint8_t a91[12]; pack_bits(plain, FT8_K, a91); // TODO: check CRC // printf("%03d: score = %d freq = %.1f time = %.2f\n", idx, // cand.score, freq_hz, time_sec); // print_tones(kGray_map, log174); // for (int i = 0; i < 12; ++i) { // printf("%02x ", a91[i]); // } // printf("\n"); char message[kMax_message_length]; unpack77(a91, message); // Check for duplicate messages (TODO: use hashing) bool found = false; for (int i = 0; i < num_decoded; ++i) { if (0 == strcmp(decoded[i], message)) { found = true; break; } } if (!found && num_decoded < kMax_decoded_messages) { strcpy(decoded[num_decoded], message); ++num_decoded; // Fake WSJT-X-like output for now int snr = 0; // TODO: compute SNR printf("000000 %3d %4.1f %4d ~ %s\n", idx, time_sec, (int)(freq_hz + 0.5f), message); } } printf("Decoded %d messages\n", num_decoded); return 0; }