#include #include #include #include #include "ft8/unpack.h" #include "ft8/ldpc.h" #include "ft8/decode.h" #include "ft8/constants.h" #include "ft8/encode.h" #include "common/wave.h" #include "common/debug.h" #include "fft/kiss_fftr.h" #define LOG_LEVEL LOG_INFO const int kMin_score = 40; // Minimum sync score threshold for candidates const int kMax_candidates = 120; const int kLDPC_iterations = 25; const int kMax_decoded_messages = 50; const int kMax_message_length = 25; const int kFreq_osr = 2; const int kTime_osr = 2; const float kFSK_dev = 6.25f; // tone deviation in Hz and symbol rate void usage() { fprintf(stderr, "Decode a 15-second WAV file.\n"); } float hann_i(int i, int N) { float x = sinf((float)M_PI * i / (N - 1)); return x*x; } float hamming_i(int i, int N) { const float a0 = (float)25 / 46; const float a1 = 1 - a0; float x1 = cosf(2 * (float)M_PI * i / (N - 1)); return a0 - a1*x1; } float blackman_i(int i, int N) { const float alpha = 0.16f; // or 2860/18608 const float a0 = (1 - alpha) / 2; const float a1 = 1.0f / 2; const float a2 = alpha / 2; float x1 = cosf(2 * (float)M_PI * i / (N - 1)); //float x2 = cosf(4 * (float)M_PI * i / (N - 1)); float x2 = 2*x1*x1 - 1; // Use double angle formula return a0 - a1*x1 + a2*x2; } static float max2(float a, float b) { return (a >= b) ? a : b; } // Compute FFT magnitudes (log power) for each timeslot in the signal void extract_power(const float signal[], ft8::MagArray * power) { const int block_size = 2 * power->num_bins; // Average over 2 bins per FSK tone const int subblock_size = block_size / power->time_osr; const int nfft = block_size * power->freq_osr; // We take FFT of two blocks, advancing by one const float fft_norm = 2.0f / nfft; float window[nfft]; for (int i = 0; i < nfft; ++i) { window[i] = hann_i(i, nfft); } size_t fft_work_size; kiss_fftr_alloc(nfft, 0, 0, &fft_work_size); LOG(LOG_INFO, "Block size = %d\n", block_size); LOG(LOG_INFO, "Subblock size = %d\n", subblock_size); LOG(LOG_INFO, "N_FFT = %d\n", nfft); LOG(LOG_INFO, "FFT work area = %lu\n", fft_work_size); void *fft_work = malloc(fft_work_size); kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size); int offset = 0; float max_mag = -100.0f; for (int i = 0; i < power->num_blocks; ++i) { // Loop over two possible time offsets (0 and block_size/2) for (int time_sub = 0; time_sub < power->time_osr; ++time_sub) { kiss_fft_scalar timedata[nfft]; kiss_fft_cpx freqdata[nfft/2 + 1]; float mag_db[nfft/2 + 1]; // Extract windowed signal block for (int j = 0; j < nfft; ++j) { timedata[j] = window[j] * signal[(i * block_size) + (j + time_sub * subblock_size)]; } kiss_fftr(fft_cfg, timedata, freqdata); // Compute log magnitude in decibels for (int j = 0; j < nfft/2 + 1; ++j) { float mag2 = (freqdata[j].i * freqdata[j].i + freqdata[j].r * freqdata[j].r); mag_db[j] = 10.0f * log10f(1E-10f + mag2 * fft_norm * fft_norm); } // Loop over two possible frequency bin offsets (for averaging) for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub) { for (int j = 0; j < power->num_bins; ++j) { float db1 = mag_db[j * power->freq_osr + freq_sub]; //float db2 = mag_db[j * 2 + freq_sub + 1]; //float db = (db1 + db2) / 2; float db = db1; //float db = sqrtf(db1 * db2); // Scale decibels to unsigned 8-bit range and clamp the value int scaled = (int)(2 * (db + 120)); power->mag[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled); ++offset; if (db > max_mag) max_mag = db; } } } } LOG(LOG_INFO, "Max magnitude: %.1f dB\n", max_mag); free(fft_work); } void normalize_signal(float *signal, int num_samples) { float max_amp = 1E-5f; for (int i = 0; i < num_samples; ++i) { float amp = fabsf(signal[i]); if (amp > max_amp) { max_amp = amp; } } for (int i = 0; i < num_samples; ++i) { signal[i] /= max_amp; } } void print_tones(const uint8_t *code_map, const float *log174) { for (int k = 0; k < ft8::N; k += 3) { uint8_t max = 0; if (log174[k + 0] > 0) max |= 4; if (log174[k + 1] > 0) max |= 2; if (log174[k + 2] > 0) max |= 1; LOG(LOG_DEBUG, "%d", code_map[max]); } LOG(LOG_DEBUG, "\n"); } int main(int argc, char **argv) { // Expect one command-line argument if (argc < 2) { usage(); return -1; } const char *wav_path = argv[1]; int sample_rate = 12000; int num_samples = 15 * sample_rate; float signal[num_samples]; int rc = load_wav(signal, num_samples, sample_rate, wav_path); if (rc < 0) { return -1; } normalize_signal(signal, num_samples); // Compute DSP parameters that depend on the sample rate const int num_bins = (int)(sample_rate / (2 * kFSK_dev)); const int block_size = 2 * num_bins; const int subblock_size = block_size / kTime_osr; const int nfft = block_size * kFreq_osr; const int num_blocks = (num_samples - nfft + subblock_size) / block_size; LOG(LOG_INFO, "Sample rate %d Hz, %d blocks, %d bins\n", sample_rate, num_blocks, num_bins); // Compute FFT over the whole signal and store it uint8_t mag_power[num_blocks * kFreq_osr * kTime_osr * num_bins]; ft8::MagArray power = { .num_blocks = num_blocks, .num_bins = num_bins, .time_osr = kTime_osr, .freq_osr = kFreq_osr, .mag = mag_power }; extract_power(signal, &power); // Find top candidates by Costas sync score and localize them in time and frequency ft8::Candidate candidate_list[kMax_candidates]; int num_candidates = ft8::find_sync(&power, ft8::kCostas_map, kMax_candidates, candidate_list); // TODO: sort the candidates by strongest sync first? // Go over candidates and attempt to decode messages char decoded[kMax_decoded_messages][kMax_message_length]; int num_decoded = 0; for (int idx = 0; idx < num_candidates; ++idx) { ft8::Candidate &cand = candidate_list[idx]; if (cand.score < kMin_score) continue; float freq_hz = (cand.freq_offset + (float)cand.freq_sub / kFreq_osr) * kFSK_dev; float time_sec = (cand.time_offset + (float)cand.time_sub / kTime_osr) / kFSK_dev; float log174[ft8::N]; ft8::extract_likelihood(&power, cand, ft8::kGray_map, log174); // bp_decode() produces better decodes, uses way less memory uint8_t plain[ft8::N]; int n_errors = 0; ft8::bp_decode(log174, kLDPC_iterations, plain, &n_errors); //ft8::ldpc_decode(log174, kLDPC_iterations, plain, &n_errors); if (n_errors > 0) { LOG(LOG_DEBUG, "ldpc_decode() = %d (%.0f Hz)\n", n_errors, freq_hz); continue; } int sum_plain = 0; for (int i = 0; i < ft8::N; ++i) { sum_plain += plain[i]; } if (sum_plain == 0) { // All zeroes message continue; } // Extract payload + CRC (first ft8::K bits) uint8_t a91[ft8::K_BYTES]; ft8::pack_bits(plain, ft8::K, a91); // Extract CRC and check it uint16_t chksum = ((a91[9] & 0x07) << 11) | (a91[10] << 3) | (a91[11] >> 5); a91[9] &= 0xF8; a91[10] = 0; a91[11] = 0; uint16_t chksum2 = ft8::crc(a91, 96 - 14); if (chksum != chksum2) { LOG(LOG_DEBUG, "Checksum: message = %04x, CRC = %04x\n", chksum, chksum2); continue; } char message[kMax_message_length]; if (ft8::unpack77(a91, message) < 0) { continue; } // Check for duplicate messages (TODO: use hashing) bool found = false; for (int i = 0; i < num_decoded; ++i) { if (0 == strcmp(decoded[i], message)) { found = true; break; } } if (!found && num_decoded < kMax_decoded_messages) { strcpy(decoded[num_decoded], message); ++num_decoded; // Fake WSJT-X-like output for now int snr = 0; // TODO: compute SNR printf("000000 %3d %4.1f %4d ~ %s\n", cand.score, time_sec, (int)(freq_hz + 0.5f), message); } } LOG(LOG_INFO, "Decoded %d messages\n", num_decoded); return 0; }