bird/doc/bird.sgml
2000-05-29 12:03:28 +00:00

680 lines
27 KiB
Text

<!doctype linuxdoc system>
<!--
BIRD documentation
Look for "about this documentation" section to learn more.
(set-fill-column 100)
Copyright 1999,2000 Pavel Machek <pavel@ucw.cz>, distribute under GPL version 2 or later.
-->
<article>
<title>BIRD
<author>
Pavel Machek <tt/pavel@ucw.cz/
<date>2000
<abstract>
This document contains documentation for BIRD Internet Routing Daemon
</abstract>
<!-- Table of contents -->
<toc>
<!-- Begin the document -->
<sect>Introduction
<sect1>What is BIRD
<p><label id="intro">
The name `BIRD' is actually an acronym standing for `BIRD Internet Routing Daemon'.
Let's take a closer look at the meaning of the name:
<p><em/BIRD/: Well, we think we have already explained that. It's an acronym standing
for `BIRD Internet Routing Daemon', you remember, don't you? :-)
<p><em/Internet Routing/: It's a program (well, a daemon, as you are going to discover in a moment)
which works as a dynamic router in an Internet type network (that is, in a network running either
the IPv4 or the IPv6 protocol). Routers are devices which forward packets between interconnected
networks in order to allow hosts not connected directly to the same local area network to
communicate with each other. They also communicate with other routers in the Internet to discover
the topology of the network which allows them to find optimal (in terms of some metric) rules for
forwarding of packets (which will be called routes in the rest of this document) and to adapt to the
changing conditions such as outages of network links, building of new connections and so on. Most of
these routers are costly dedicated devices running obscure firmware which is hard to configure and
not open to any changes. Fortunately, most operating systems of the UNIX family allow an ordinary
computer to act as a router and forward packets belonging to the other hosts, but only according to
a statically configured table.
<p>A <em/Routing Daemon/ is in UNIX terminology a non-interactive program running on
background which does the dynamic part of Internet routing, that is it communicates
with the other routers, calculates routing tables and sends them to the OS kernel
which does the actual packet forwarding.
<p>There already exist some such routing daemons (routed, GateD <HTMLURL URL="http://www.gated.org/">
and Zebra <HTMLURL URL="http://www.zebra.org">), but their capabilities are very limited and
they are very hard to configure and maintain.
<p>BIRD is an Internet Routing Daemon designed to avoid all of these shortcomings,
to support all the routing technology used in today's Internet or planned to be
used in near future and to have a clean extensible architecture allowing new routing
protocols to be incorporated easily. Among other features, BIRD supports:
<itemize>
<item>both IPv4 and IPv6 protocols
<item>multiple routing tables
<item>the Border Gateway Protocol (BGPv4)
<item>the Routing Interchange Protocol (RIPv2)
<item>the Open Shortest Path First protocol (OSPFv2)
<item>a virtual protocol for exchange of routes between internal routing tables
<item>a command-line interface allowing on-line control and inspection
of status of the daemon
<item>soft reconfiguration (no need to use complex online commands
to change the configuration, just edit the configuration file
and notify BIRD to re-read it and it will smoothly switch
to the new configuration, not disturbing routing protocols
unless they are affected by the configuration changes)
<item>powerful language for route filtering
</itemize>
<p>BIRD has been developed at the Faculty of Math and Physics, Charles University, Prague,
Czech Republic as a student project. It's distributed under the terms of the GNU General
Public License.
<p>BIRD has been designed to work on all UNIX-like systems. It has been developed and
tested under Linux 2.0 to 2.3, but porting to other systems (even non-UNIX ones) should
be relatively easy due to its highly modular architecture).
<sect1>About this documentation
<p>This documentation can have 4 forms: sgml (this is master copy), html, ASCII text (generated from
html) and dvi/postscript (generated from sgml using sgmltools). You should always edit master copy,
it is slightly modified linuxdoc dtd. Anything in &lt;descrip&gt; tags is considered definition of
configuration primitives, &lt;cf&gt; is fragment of configuration within normal text, &lt;m&gt; is
"meta" information within fragment of configuration -- something in config which is not keyword.
<sect1>About routing tables
<p>Bird has one or more routing tables. Each routing table contains
list of known routes. Each route has certain attributes, most
important is prefix of network this route is for. Routing table
maintains more than one entry for network, but at most one entry for
one network and one protocol. The entry with biggest preference is
used for routing. If there are more entries with same preference and
they are from same protocol, protocol decides (typically according to
metrics). You can get list of route attributes in "Route attributes"
section in filters.
<sect>Configuration
<sect1>Introduction
<p>BIRD is configured using text configuration file. At startup, BIRD reads <file/bird.conf/ (unless
-c command line parameter is given). Configuration may be changed on user request: if you modify
config file and then signal BIRD with SIGHUP, it will adjust to new config. There's BIRD client,
which allows you to talk with BIRD in more extensive way than just telling it to reconfigure. BIRD
writes messages about its work to log files or syslog (according to config).
<p>Bird is configured using text configuration file. At startup, bird
reads <file/bird.conf/ (unless -c command line parameter is
given). Everything on a line after <cf/#/ is a comment, whitespace is
ignored, C-style comments <cf>/* comment */</cf> are also
recognized. If there's variable number of options, it is grouped using
<cf/{ }/ brackets. Each option is terminated by <cf/;/.
<p>Really simple configuration file might look like this:
<code>
protocol kernel {
persist; # Don't remove routes on BIRD shutdown
scan time 20; # Scan kernel routing table every 20 seconds
export all; # Default is export none
}
protocol device {
scan time 10; # Scan interfaces every 10 seconds
}
protocol rip {
export all;
import all;
}
</code>
<sect1>Global options
<p><descrip>
<tag>log "<m/filename/"|syslog|stderr all|{ <m/list of classes/ }</tag>
set logging of classes (either all or <cf/{
error, trace }/ etc.) into selected destination. Classes are:
<cf/info/, <cf/warning/, <cf/error/, <cf/fatal/ for messages about local problems
<cf/debug/ for debugging messages,
<cf/trace/ when you want to know what happens on network,
<cf/remote/ for messages about misbehavior of remote side,
<cf/auth/ about authentication failures,
<cf/bug/ for internal bugs
of BIRD. You may specify more than one <cf/log/ line to log to multiple
destinations.
<tag>debug protocols all|off|{ states, routes, filters, interfaces, events, packets }</tag>
sets global default of protocol debugging options.
<tag>filter <m/name/{ <m/commands/ }</tag> define filter. You can learn more about filters
in next chapter.
<tag>protocol rip|ospf|bgp|... <m/[name]/ { <m>protocol options</m> }</tag> define protocol
instance, called name (or called something like rip5 if you omit name). You can learn more
about configuring protocols in their own chapters. You can run more than one instance of
most protocols (like rip or bgp).
<tag>define constant = expression</tag> define constant. You can use it later in every place
you could use simple integer.
<tag>router id <m/IPv4 address/</tag> set router id. Router id needs to be world-wide
unique. It is usually one of router's IPv4 addresses.
<tag>table <m/name/</tag> create new routing table.
<tag>eval <m/expr/</tag> evaluates given filter expression. It is used for testing.
</descrip>
<sect1>Protocol options
<p>Several options are per-protocol, but all protocols support them. They are described here.
<descrip>
<tag>preference <m/expr/</tag> sets preference of routes generated by this protocol.
<tag>disabled</tag> disables given protocol. You can disable/enable protocol from command
line interface without needing to touch config.
<tag>debug <m/setting/</tag> this is similar to global debug setting, except that it only
affects one protocol. Only messages in selected debugging categories will be written to
logs.
<tag>import <m/filter/</tag> filter can be either either <cf> { <m>filter commands</m>
}</cf> or <cf>filter <m/name/</cf>. Import filter works in direction from protocol to main
routing table.
<tag>export <m/filter/</tag> This is similar to <cf>export</cf> keyword, except that it
works in direction from main routing table to protocol.
<tag>table <m/name/</tag> Connect this protocol to non-default table.
</descrip>
<p>There are per-protocol options that give sense only with certain protocols.
<descrip>
<tag>passwords { password "<m/password/" from <m/time/ to <m/time/ passive <m/time/ id
<m/num/ [...] }</tag> specifies passwords to be used with this protocol. Passive time is
time from which password is not announced but is allowed. id is password id, as needed by
certain protocols.
<tag>interface "<m/mask/"|<m/prefix/ [ { <m/option/ ; [ ... ] } ]</tag> specifies, which
interfaces this protocol is active at, and allows you to set options on
interface-by-interface basis. Mask is specified in shell-like patters, thus <cf>interface
"*" { mode broadcast; };</cf> will start given protocol on all interfaces, with <cf>mode
broadcast;</cf> option.
</descrip>
<sect>Filters
<sect1>Introduction
<p>BIRD contains rather simple programming language. (No, it can not yet read mail :-). There are
two objects in this language: filters and functions. Filters are called by BIRD core when route is
being passed between protocol and main routing table, and filters may call functions. Functions may
call other functions, but recursion is not allowed. Filter language contains control structures such
as if's and switches, but it allows no loops. Filters are
interpreted. Filter using many features can be found in <file>filter/test.conf</file>.
<p>You can find sources of filters language in <file>filter/</file>
directory. <file>filter/config.Y</file> contains filter grammar, and basically translates source from
user into tree of <cf>f_inst</cf> structures. These trees are later interpreted using code in
<file>filter/filter.c</file>. Filters internally work with values/variables in <tt>struct
f_val</tt>, which contains type of value and value.
<p>Filter basically gets the route, looks at its attributes and
modifies some of them if it wishes. At the end, it decides, whether to
pass change route through (using <cf/accept/), or whether to <cf/reject/ given route. It looks
like this:
<code>
filter not_too_far
int var;
{
if defined( rip_metric ) then
var = rip_metric;
else {
var = 1;
rip_metric = 1;
}
if rip_metric &gt; 10 then
reject "RIP metric is too big";
else
accept "ok";
}
</code>
<p>As you can see, filter has a header, list of local variables, and body. Header consists of
<cf/filter/ keyword, followed by (unique) name of filter. List of local variables consists of
pairs <cf><M>type name</M>;</cf>, where each pair defines one local variable. Body consists of
<cf> { <M>statements</M> }</cf>. Statements are terminated by <cf/;/. You can group
several statements into one by <cf>{ <M>statements</M> }</cf> construction, that is useful if
you want to make bigger block of code conditional.
<p>There are two special filters, <cf/all/ (which accepts all routes) and <cf/none/ (which rejects
all routes).
<p>Bird supports functions, so that you don't have to repeat same blocks of code over and
over. Functions can have zero or more parameters, and can have local variables. Function basically
looks like this:
<code>
function name ()
int local_variable;
{
local_variable = 5;
}
function with_parameters (int parameter)
{
print parameter;
}
</code>
<p>Unlike C, variables are declared after function line but before first {. You can not declare
variables in nested blocks. Functions are called like in C: <cf>name();
with_parameters(5);</cf>. Function may return value using <cf>return <m/[expr]/</cf>
syntax. Returning value exits from current function (this is similar to C).
<p>Filters are declared in similar way to functions, except they can not have explicit
parameters. They get route table entry as implicit parameter. Route table entry is passed implicitly
to any functions being called. Filter must terminate with either
accept or reject statement. If there's runtime error in filter, route
is rejected.
<sect1>Data types
<p>Each variable and each value has certain type. Unlike C, filters distinguish between integers and
booleans (that is to prevent you from shooting in the foot).
<descrip>
<tag/bool/ this is boolean type, it can have only two values, <cf/TRUE/ and
<cf/FALSE/. Boolean is not compatible with integer and is the only type you can use in if
statements.
<tag/int/ this is common integer, you can expect it to store signed values from -2000000000
to +2000000000.
<tag/pair/ this is pair of two short integers. Each component can have values from 0 to
65535. Constant of this type is written as <cf/(1234,5678)/.
<tag/string/ this is string of characters. There are no ways to modify strings in
filters. You can pass them between functions, assign to variable of type string, print
such variables, but you can not concatenate two strings (for example). String constants
are written as <cf/"This is a string constant"/.
<tag/ip/ this type can hold single ip address. Depending on version of BIRD you are using, it
can be IPv4 or IPv6 address. IPv4 addresses are written (as you would expect) as
<cf/1.2.3.4/. You can apply special operator <cf>.mask(<M>num</M>)</cf>
on values of type ip. It masks out all but first <cf><M>num</M></cf> bits from ip
address. So <cf/1.2.3.4.mask(8) = 1.0.0.0/ is true.
<tag/prefix/ this type can hold ip address, prefix len pair. Prefixes are written as
<cf><M>ipaddress</M>/<M>pxlen</M></cf>, or
<cf><m>ipaddress</m>/<m>netmask</m></cf> There are two special
operators on prefix:
<cf/.ip/, which separates ip address from the pair, and <cf/.len/, which separates prefix
len from the pair.
<tag/int|ip|prefix|pair set/
filters know four types of sets. Sets are similar to strings: you can pass them around
but you can not modify them. Constant of type <cf>set int</cf> looks like <cf>
[ 1, 2, 5..7 ]</cf>. As you can see, both simple values and ranges are permitted in
sets. Sets of prefixes are special: you can specify which prefixes should match them by
using <cf>[ 1.0.0.0/8+, 2.0.0.0/8-, 3.0.0.0/8{5,6} ]</cf>. 3.0.0.0/8{5,6} matches
prefixes 3.X.X.X, whose prefix length is 5 to 6. 3.0.0.0/8+ is shorthand for 3.0.0.0/{0,8},
3.0.0.0/8- is shorthand for 3.0.0.0/{0,7}.
<tag/enum/
enumeration types are halfway-internal in the BIRD. You can not define your own
variable of enumeration type, but some predefined variables are of enumeration
type. Enumeration types are incompatible with each other, again, for your
protection.
<tag/bgppath/
bgp path is list of autonomous systems.
<tag/bgpmask/
bgp mask is mask used for matching bgp paths
(using <cf>path ~ / 2 3 5 ? / syntax </cf>). <cf/?/ is
really serving in "any number of autonomous systems", but we
did not want to use * because then it becomes too easy to
write <cf>/*</cf> which is start of comment.
<tag/clist/
community list. This is similar to set of pairs,
except that unlike other sets, it can be modified.
</descrip>
<sect1>Operations
<p>Filter language supports common integer operations <cf>(+,-,*,/)</cf>, parentheses <cf/(a*(b+c))/, comparison
<cf/(a=b, a!=b, a&lt;b, a&gt;=b)/. Special operators include <cf/&tilde;/ for "in" operation. In operation can be
used on element and set of that elements, or on ip and prefix, or on
prefix and prefix or on bgppath and bgpmask or on pair and clist. Its result
is true if element is in given set or if ip address is inside given prefix. Operator <cf/=/ is used to assign value
to variable.
<sect1>Control structures
<p>Filters support two control structures: if/then/else and case. Syntax of if/then/else is <cf>if
<M>expression</M> then <M>command</M>; else <M>command</M>;</cf> and you can use <cf>{
<M>command_1</M>; <M>command_2</M>; <M>...</M> }</cf> instead of one or both commands. <cf>else</cf>
clause may be omitted.
<p><cf>case</cf> is similar to case from Pascal. Syntax is <cf>case <m/expr/ { else |
<m/num_or_prefix [ .. num_or_prefix]/ : <m/statement/ ; [ ... ] }</cf>. Expression after
<cf>case</cf> can be of any type that can be on the left side of &tilde; operator, and anything that could
be member of set is allowed before :. Multiple commands are allowed without {} grouping. If argument
matches neither of : clauses, else: clause is used. (Case is actually implemented as set matching,
internally.)
<p>Here is example that uses if and case structures:
<code>
case arg1 {
2: print "two"; print "I can do more commands without {}";
3 .. 5: print "three to five";
else: print "something else";
}
if 1234 = i then printn "."; else { print "*** FAIL: if 1 else"; }
</code>
<sect1>Route attributes
<p>Filter is implicitly passed route, and it can access its attributes, just like it accesses variables.
<descrip>
<tag>defined( <m>attribute</m> )</tag>
returns TRUE if given attribute is defined. Access to undefined attribute results in runtime error.
<tag/<m/prefix/ network/
network this route is talking about.
<tag/<m/ip/ from/
who told me about this route.
<tag/<m/ip/ gw/
what is next hop packets routed using this route should be forwarded to.
<tag/<m/enum/ source/
what protocol told me about this route. This can have values such as <cf/RTS_RIP/ or <cf/RTS_OSPF_EXT/.
</descrip>
<p>Plus, there are protocol-specific attributes, which are described in protocol sections.
<sect1>Utility functions
<p>There are few functions you might find convenient to use:
<descrip>
<tag>print <m/expr/ [ <m/, expr .../ ]</tag>
prints given expressions, useful mainly while debugging filters.
<tag>quitbird</tag>
terminates bird. Useful while debugging filter interpreter.
</descrip>
<sect>Protocols
<sect1>BGP
<sect1>Device
<sect2>Introduction
<p>The Device protocol is not a real routing protocol as it doesn't generate
any routes and only serves as a module for getting information about network
interfaces from the kernel.
<p>Except for very unusual circumstances, you probably should always include
this protocol in the configuration since almost all other protocol don't
do anything if they are not provided with network interfaces.
<sect2>Configuration
<p><descrip>
<tag>scan time <m/number/</tag> Time in seconds between two scans
of the network interface list. On systems where we are notified about
interface status changes asynchronously (such as newer versions of
Linux), we need to scan the list only to avoid confusion by lost
notifications, so the default time is set to a large value.
</descrip>
<sect2>Attributes
<p>As the Device protocol doesn't generate any routes, it cannot have
any attributes.
<sect2>Example
<p><code>
protocol device {
scan time 10; # Scan the interfaces often
}
</code>
<sect1>Direct
<sect2>Introduction
<p>The Direct protocol is a simple generator of device routes for all the
directly connected networks according to the list of interfaces provided
by the kernel via the Device protocol.
<p>It's highly recommended to include this protocol in your configuration
unless you want to use BIRD as a route server or a route reflector, that is
on a machine which doesn't forward packets and only participates in
distribution of routing information.
<sect2>Configuration
<p><descrip>
<tag>interface <m/pattern/, <m/.../</tag> By default, the Direct
protocol will generate device routes for all the interfaces
available. If you want to restrict it to some subset of interfaces
(for example if you're using multiple routing tables for policy
routing and some of the policy domains don't contain all interfaces),
just use this clause.
</descrip>
<sect2>Attributes
<p>Direct device routes don't contain any specific attributes.
<sect2>Example
<p><code>
protocol direct {
interface "-arc*", "*"; # Exclude the ARCnets
}
</code>
<sect1>Kernel
<sect1>OSPF
<sect1>Pipe
<sect1>Rip
<sect2>Introduction
<p>Rip protocol (sometimes called Rest In Pieces) is simple protocol, where each router broadcasts
distances to all networks he can reach. When router hears distance to other network, it increments
it and broadcasts it back. Broadcasts are done in regular intervals. Therefore, if some network goes
unreachable, routers keep telling each other that distance is old distance plus 1 (actually, plus
interface metric, which is usually one). After some time, distance reaches infinity (that's 15 in
rip) and all routers know that network is unreachable. Rip tries to minimize situations where
counting to infinity is necessary, because it is slow. Due to infinity being 16, you can not use
rip on networks where maximal distance is bigger than 15 hosts. You can read more about rip at <HTMLURL
URL="http://www.ietf.org/html.charters/rip-charter.html">.
<sect2>Configuration
<p>In addition to options generic to other protocols, rip supports following options:
<descrip>
<tag/authentication none|password|md5/ selects authentication method to use. None means that
packets are not authenticated at all, password means that plaintext password is embedded
into each packet, and md5 means that packets are authenticated using md5 cryptographic
hash. If you set authentication to non-none, it is good idea to add <cf>passwords { }</cf>
section.
<tag>honor always|neighbor|never </tag>specifies, when should be routing table updates
honored. (Always, when sent from host on directly connected network, or never.)
</descrip>
<p>There are two options that can be specified per-interface. First is <cf>metric</cf>, with
default one. Second is <cf>mode multicast|broadcast|quiet|nolisten|version1</cf>, it selects mode for
rip to work in. If nothing is specified, rip runs in multicast mode. <cf>version1</cf> is
currently equivalent to <cf>broadcast</cf>, and it makes rip talk at broadcast address even
through multicast mode is possible. <cf>quiet</cf> option means that rip will not transmit
periodic messages onto this interface and <cf>nolisten</cf> means that rip will talk to this
interface but not listen on it.
<p>Following options generally override specified behavior from RFC. If you use any of these
options, BIRD will no longer be RFC-compatible, which means it will not be able to talk to anything
other than equally misconfigured BIRD. I warned you.
<descrip>
<tag>port <M>number</M></tag>
selects IP port to operate on, default 520. (This is useful when testing BIRD, if you
set this to address &gt;1024, you will not need to run bird with UID==0).
<tag>infinity <M>number</M></tag>
select value of infinity, default 16. Bigger values will make protocol convergence
even slower.
<tag>period <M>number</M>
</tag>specifies number of seconds between periodic updates. Default is 30 seconds. Lower
number will mean faster convergence but bigger network load.
<tag>timeouttime <M>number</M>
</tag>specifies how old route has to be to be considered unreachable. Default is 4*period.
<tag>garbagetime <M>number</M>
</tag>specifies how old route has to be to be discarded. Default is 10*period.
</descrip>
<sect2>Attributes
<p>RIP defines two route attributes:
<descrip>
<tag>int <cf/rip_metric/</tag> RIP metric of the route (ranging from 0 to <cf/infinity/).
When routes from different RIP instances are available and all of them have the same
preference, BIRD prefers the route with lowest <cf/rip_metric/.
<tag>int <cf/rip_tag/</tag> RIP route tag: a 16-bit number which can be used
to carry additional information with the route (for example, an originating AS number
in case of external routes).
</descrip>
<sect2>Example
<p><code>
protocol rip MyRIP_test {
debug all;
port 1520;
period 7;
garbagetime 60;
interface "eth0" { metric 3; mode multicast; } "eth1" { metric 2; mode broadcast; };
honor neighbour;
passwords { password "ahoj" from 0 to 10;
password "nazdar" from 10;
}
authentication none;
import filter { print "importing"; accept; };
export filter { print "exporting"; accept; };
}
</code>
<sect1>Static
<sect2>Introduction
<p>The static protocol doesn't communicate with other routers in the network,
but instead it allows you to define routes manually which is often used for
specifying how to forward packets to parts of the network which don't use
dynamic routing at all and also for defining sink routes (i.e., those
telling to return packets as undeliverable if they are in your IP block,
you don't have any specific destination for them and you don't want to send
them out through the default route to prevent routing loops).
<p>There are three types of static routes: `classical' routes telling to
forward packets to a neighboring router, device routes specifying forwarding
to hosts on a directly connected network and special routes (sink, blackhole
etc.) which specify a special action to be done instead of forwarding the
packet.
<p>When the particular destination is not available (the interface is down or
the next hop of the route is not a neighbor at the moment), Static just
uninstalls the route from the table its connected to and adds it again as soon
as the destinations becomes adjacent again.
<sect2>Configuration
<p>The Static protocol has no configuration options. Instead, the
definition of the protocol contains a list of static routes which
can contain:
<descrip>
<tag>route <m/prefix/ via <m/ip/</tag> Static route through
a neighboring router.
<tag>route <m/prefix/ via <m/"interface"/</tag> Static device
route through an interface to hosts on a directly connected network.
<tag>route <m/prefix/ drop|reject|prohibit</tag> Special routes
specifying to drop the packet, return it as unreachable or return
it as administratively prohibited.
</descrip>
<sect2>Attributes
<p>Static routes have no specific attributes.
<sect2>Example
<p><code>
protocol static {
table testable; # Connect to non-default routing table
route 0.0.0.0/0 via 62.168.0.13; # Default route
route 62.168.0.0/25 reject; # Sink route
route 10.2.0.0/24 via "arc0"; # Secondary network
}
</code>
<sect>Getting more help
<p>This is really last section of this file, should give pointers to
programmers documentation, web pages mailing lists and similar stuff.
</article>
<!--
# LocalWords: IPv doctype verb GPL sgml html unix dvi sgmltools linuxdoc dtd descrip config conf syslog stderr auth ospf bgp router's IP expr num inst bool int ip px len enum cf md eval ipaddress pxlen netmask bgppath bgpmask clist gw RTS EXT quitbird nolisten UID timeouttime garbagetime RFC doc
-->