bird/filter/tree_test.c
Maria Matejka 8bdb05edb2 Filters: split the large filter.h file to smaller files.
This should be revised, there are still ugly things in the filter API.
2019-02-20 22:30:54 +01:00

305 lines
6.8 KiB
C

/*
* Filters: Utility Functions Tests
*
* (c) 2015 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include "test/birdtest.h"
#include "test/bt-utils.h"
#include "filter/filter.h"
#include "filter/f-util.h"
#include "conf/conf.h"
#define MAX_TREE_HEIGHT 13
static void
start_conf_env(void)
{
bt_bird_init();
pool *p = rp_new(&root_pool, "helper_pool");
linpool *l = lp_new_default(p);
cfg_mem = l;
}
static struct f_tree *
new_tree(uint id)
{
struct f_tree *tree = f_new_tree();
tree->from.type = tree->to.type = T_INT;
tree->from.val.i = tree->to.val.i = id;
return tree;
}
/*
* Show subtree in infix notation
*/
static void
show_subtree(struct f_tree *node)
{
if (!node)
return;
show_subtree(node->left);
if (node->from.val.i == node->to.val.i)
bt_debug("%u ", node->from.val.i);
else
bt_debug("%u..%u ", node->from.val.i, node->to.val.i);
show_subtree(node->right);
}
static void
show_tree2(struct f_tree *root_node, const char *tree_name)
{
bt_debug("%s: \n", tree_name);
bt_debug("[ ");
show_subtree(root_node);
bt_debug("]\n\n");
}
#define show_tree(tree) show_tree2(tree, #tree);
static uint
get_nodes_count_full_bin_tree(uint height)
{
return (bt_naive_pow(2, height+1) - 1);
}
static struct f_tree *
get_balanced_full_subtree(uint height, uint idx)
{
struct f_tree *node = new_tree(idx);
if (height > 0)
{
uint nodes_in_subtree = get_nodes_count_full_bin_tree(--height);
node->left = get_balanced_full_subtree(height, idx - nodes_in_subtree/2 - 1);
node->right = get_balanced_full_subtree(height, idx + nodes_in_subtree/2 + 1);
}
return node;
}
static struct f_tree *
get_balanced_full_tree(uint height)
{
return get_balanced_full_subtree(height, get_nodes_count_full_bin_tree(height)/2);
}
static struct f_tree *
get_degenerated_left_tree(uint nodes_count)
{
struct f_tree *old = NULL;
struct f_tree *new = NULL;
uint i;
for (i = 0; i < nodes_count; i++)
{
old = new;
new = new_tree(nodes_count-1-i);
new->left = old;
}
return new;
}
static struct f_tree *
get_random_degenerated_left_tree(uint nodes_count)
{
struct f_tree *tree = get_degenerated_left_tree(nodes_count);
size_t avaible_indexes_size = nodes_count * sizeof(byte);
byte *avaible_indexes = malloc(avaible_indexes_size);
memset(avaible_indexes, 0, avaible_indexes_size);
struct f_tree *n;
for (n = tree; n; n = n->left)
{
uint selected_idx;
do
{
selected_idx = bt_random() % nodes_count;
} while(avaible_indexes[selected_idx] != 0);
avaible_indexes[selected_idx] = 1;
n->from.type = n->to.type = T_INT;
n->from.val.i = n->to.val.i = selected_idx;
}
free(avaible_indexes);
return tree;
}
static struct f_tree *
get_balanced_tree_with_ranged_values(uint nodes_count)
{
struct f_tree *tree = get_degenerated_left_tree(nodes_count);
uint idx = 0;
struct f_tree *n;
for (n = tree; n; n = n->left)
{
n->from.type = n->to.type = T_INT;
n->from.val.i = idx;
idx += (uint)bt_random() / nodes_count; /* (... / nodes_count) preventing overflow an uint idx */
n->to.val.i = idx++;
}
return build_tree(tree);
}
static int
t_balancing(void)
{
start_conf_env();
uint height;
for (height = 1; height < MAX_TREE_HEIGHT; height++)
{
uint nodes_count = get_nodes_count_full_bin_tree(height);
struct f_tree *simple_degenerated_tree = get_degenerated_left_tree(nodes_count);
show_tree(simple_degenerated_tree);
struct f_tree *expected_balanced_tree = get_balanced_full_tree(height);
show_tree(expected_balanced_tree);
struct f_tree *balanced_tree_from_simple = build_tree(simple_degenerated_tree);
show_tree(balanced_tree_from_simple);
bt_assert(same_tree(balanced_tree_from_simple, expected_balanced_tree));
}
return 1;
}
static int
t_balancing_random(void)
{
start_conf_env();
uint height;
for (height = 1; height < MAX_TREE_HEIGHT; height++)
{
uint nodes_count = get_nodes_count_full_bin_tree(height);
struct f_tree *expected_balanced_tree = get_balanced_full_tree(height);
uint i;
for(i = 0; i < 10; i++)
{
struct f_tree *random_degenerated_tree = get_random_degenerated_left_tree(nodes_count);
show_tree(random_degenerated_tree);
struct f_tree *balanced_tree_from_random = build_tree(random_degenerated_tree);
show_tree(expected_balanced_tree);
show_tree(balanced_tree_from_random);
bt_assert(same_tree(balanced_tree_from_random, expected_balanced_tree));
}
}
return 1;
}
static int
t_find(void)
{
start_conf_env();
uint height;
for (height = 1; height < MAX_TREE_HEIGHT; height++)
{
uint nodes_count = get_nodes_count_full_bin_tree(height);
struct f_tree *tree = get_balanced_full_tree(height);
show_tree(tree);
struct f_val looking_up_value = {
.type = T_INT
};
for(looking_up_value.val.i = 0; looking_up_value.val.i < nodes_count; looking_up_value.val.i++)
{
const struct f_tree *found_tree = find_tree(tree, &looking_up_value);
bt_assert((val_compare(&looking_up_value, &(found_tree->from)) == 0) && (val_compare(&looking_up_value, &(found_tree->to)) == 0));
}
}
return 1;
}
static uint
get_max_value_in_unbalanced_tree(struct f_tree *node, uint max)
{
if (!node)
return max;
if (node->to.val.i > max)
max = node->to.val.i;
uint max_left = get_max_value_in_unbalanced_tree(node->left, max);
if (max_left > max)
max = max_left;
uint max_right = get_max_value_in_unbalanced_tree(node->right, max);
if (max_right > max)
max = max_right;
return max;
}
static int
t_find_ranges(void)
{
start_conf_env();
uint height;
for (height = 1; height < MAX_TREE_HEIGHT; height++)
{
uint nodes_count = get_nodes_count_full_bin_tree(height);
struct f_tree *tree = get_balanced_tree_with_ranged_values(nodes_count);
uint max_value = get_max_value_in_unbalanced_tree(tree, 0);
show_tree(tree);
bt_debug("max_value: %u \n", max_value);
struct f_val needle = {
.type = T_INT
};
uint *i = &needle.val.i;
for(*i = 0; *i <= max_value; *i += (uint)bt_random()/nodes_count)
{
const struct f_tree *found_tree = find_tree(tree, &needle);
bt_debug("searching: %u \n", *i);
bt_assert(
(val_compare(&needle, &(found_tree->from)) == 0) || (val_compare(&needle, &(found_tree->to)) == 0) ||
((val_compare(&needle, &(found_tree->from)) == 1) && (val_compare(&needle, &(found_tree->to)) == -1))
);
}
}
return 1;
}
int
main(int argc, char *argv[])
{
bt_init(argc, argv);
bt_test_suite(t_balancing, "Balancing strong unbalanced trees");
bt_test_suite(t_balancing_random, "Balancing random unbalanced trees");
bt_test_suite(t_find, "Finding values in trees");
bt_test_suite(t_find_ranges, "Finding values in trees with random ranged values");
return bt_exit_value();
}