414 lines
12 KiB
C
414 lines
12 KiB
C
/*
|
|
* sha1.c
|
|
*
|
|
* an implementation of the Secure Hash Algorithm v.1 (SHA-1),
|
|
* specified in FIPS 180-1
|
|
*
|
|
* David A. McGrew
|
|
* Cisco Systems, Inc.
|
|
*/
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 2001-2017, Cisco Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Cisco Systems, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include "sha1.h"
|
|
|
|
srtp_debug_module_t srtp_mod_sha1 = {
|
|
0, /* debugging is off by default */
|
|
"sha-1" /* printable module name */
|
|
};
|
|
|
|
/* SN == Rotate left N bits */
|
|
#define S1(X) ((X << 1) | (X >> 31))
|
|
#define S5(X) ((X << 5) | (X >> 27))
|
|
#define S30(X) ((X << 30) | (X >> 2))
|
|
|
|
#define f0(B, C, D) ((B & C) | (~B & D))
|
|
#define f1(B, C, D) (B ^ C ^ D)
|
|
#define f2(B, C, D) ((B & C) | (B & D) | (C & D))
|
|
#define f3(B, C, D) (B ^ C ^ D)
|
|
|
|
/*
|
|
* nota bene: the variable K0 appears in the curses library, so we
|
|
* give longer names to these variables to avoid spurious warnings
|
|
* on systems that uses curses
|
|
*/
|
|
|
|
uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */
|
|
uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */
|
|
uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */
|
|
uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */
|
|
|
|
void srtp_sha1 (const uint8_t *msg, int octets_in_msg, uint32_t hash_value[5])
|
|
{
|
|
srtp_sha1_ctx_t ctx;
|
|
|
|
srtp_sha1_init(&ctx);
|
|
srtp_sha1_update(&ctx, msg, octets_in_msg);
|
|
srtp_sha1_final(&ctx, hash_value);
|
|
|
|
}
|
|
|
|
/*
|
|
* srtp_sha1_core(M, H) computes the core compression function, where M is
|
|
* the next part of the message (in network byte order) and H is the
|
|
* intermediate state { H0, H1, ...} (in host byte order)
|
|
*
|
|
* this function does not do any of the padding required in the
|
|
* complete SHA1 function
|
|
*
|
|
* this function is used in the SEAL 3.0 key setup routines
|
|
* (crypto/cipher/seal.c)
|
|
*/
|
|
|
|
void srtp_sha1_core (const uint32_t M[16], uint32_t hash_value[5])
|
|
{
|
|
uint32_t H0;
|
|
uint32_t H1;
|
|
uint32_t H2;
|
|
uint32_t H3;
|
|
uint32_t H4;
|
|
uint32_t W[80];
|
|
uint32_t A, B, C, D, E, TEMP;
|
|
int t;
|
|
|
|
/* copy hash_value into H0, H1, H2, H3, H4 */
|
|
H0 = hash_value[0];
|
|
H1 = hash_value[1];
|
|
H2 = hash_value[2];
|
|
H3 = hash_value[3];
|
|
H4 = hash_value[4];
|
|
|
|
/* copy/xor message into array */
|
|
|
|
W[0] = be32_to_cpu(M[0]);
|
|
W[1] = be32_to_cpu(M[1]);
|
|
W[2] = be32_to_cpu(M[2]);
|
|
W[3] = be32_to_cpu(M[3]);
|
|
W[4] = be32_to_cpu(M[4]);
|
|
W[5] = be32_to_cpu(M[5]);
|
|
W[6] = be32_to_cpu(M[6]);
|
|
W[7] = be32_to_cpu(M[7]);
|
|
W[8] = be32_to_cpu(M[8]);
|
|
W[9] = be32_to_cpu(M[9]);
|
|
W[10] = be32_to_cpu(M[10]);
|
|
W[11] = be32_to_cpu(M[11]);
|
|
W[12] = be32_to_cpu(M[12]);
|
|
W[13] = be32_to_cpu(M[13]);
|
|
W[14] = be32_to_cpu(M[14]);
|
|
W[15] = be32_to_cpu(M[15]);
|
|
TEMP = W[13] ^ W[8] ^ W[2] ^ W[0]; W[16] = S1(TEMP);
|
|
TEMP = W[14] ^ W[9] ^ W[3] ^ W[1]; W[17] = S1(TEMP);
|
|
TEMP = W[15] ^ W[10] ^ W[4] ^ W[2]; W[18] = S1(TEMP);
|
|
TEMP = W[16] ^ W[11] ^ W[5] ^ W[3]; W[19] = S1(TEMP);
|
|
TEMP = W[17] ^ W[12] ^ W[6] ^ W[4]; W[20] = S1(TEMP);
|
|
TEMP = W[18] ^ W[13] ^ W[7] ^ W[5]; W[21] = S1(TEMP);
|
|
TEMP = W[19] ^ W[14] ^ W[8] ^ W[6]; W[22] = S1(TEMP);
|
|
TEMP = W[20] ^ W[15] ^ W[9] ^ W[7]; W[23] = S1(TEMP);
|
|
TEMP = W[21] ^ W[16] ^ W[10] ^ W[8]; W[24] = S1(TEMP);
|
|
TEMP = W[22] ^ W[17] ^ W[11] ^ W[9]; W[25] = S1(TEMP);
|
|
TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);
|
|
TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);
|
|
TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);
|
|
TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);
|
|
TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);
|
|
TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);
|
|
|
|
/* process the remainder of the array */
|
|
for (t = 32; t < 80; t++) {
|
|
TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
|
|
W[t] = S1(TEMP);
|
|
}
|
|
|
|
A = H0; B = H1; C = H2; D = H3; E = H4;
|
|
|
|
for (t = 0; t < 20; t++) {
|
|
TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 40; t++) {
|
|
TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 60; t++) {
|
|
TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 80; t++) {
|
|
TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
|
|
hash_value[0] = H0 + A;
|
|
hash_value[1] = H1 + B;
|
|
hash_value[2] = H2 + C;
|
|
hash_value[3] = H3 + D;
|
|
hash_value[4] = H4 + E;
|
|
|
|
return;
|
|
}
|
|
|
|
void srtp_sha1_init (srtp_sha1_ctx_t *ctx)
|
|
{
|
|
|
|
/* initialize state vector */
|
|
ctx->H[0] = 0x67452301;
|
|
ctx->H[1] = 0xefcdab89;
|
|
ctx->H[2] = 0x98badcfe;
|
|
ctx->H[3] = 0x10325476;
|
|
ctx->H[4] = 0xc3d2e1f0;
|
|
|
|
/* indicate that message buffer is empty */
|
|
ctx->octets_in_buffer = 0;
|
|
|
|
/* reset message bit-count to zero */
|
|
ctx->num_bits_in_msg = 0;
|
|
|
|
}
|
|
|
|
void srtp_sha1_update (srtp_sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg)
|
|
{
|
|
int i;
|
|
uint8_t *buf = (uint8_t*)ctx->M;
|
|
|
|
/* update message bit-count */
|
|
ctx->num_bits_in_msg += octets_in_msg * 8;
|
|
|
|
/* loop over 16-word blocks of M */
|
|
while (octets_in_msg > 0) {
|
|
|
|
if (octets_in_msg + ctx->octets_in_buffer >= 64) {
|
|
|
|
/*
|
|
* copy words of M into msg buffer until that buffer is full,
|
|
* converting them into host byte order as needed
|
|
*/
|
|
octets_in_msg -= (64 - ctx->octets_in_buffer);
|
|
for (i = ctx->octets_in_buffer; i < 64; i++) {
|
|
buf[i] = *msg++;
|
|
}
|
|
ctx->octets_in_buffer = 0;
|
|
|
|
/* process a whole block */
|
|
|
|
debug_print(srtp_mod_sha1, "(update) running srtp_sha1_core()", NULL);
|
|
|
|
srtp_sha1_core(ctx->M, ctx->H);
|
|
|
|
} else {
|
|
|
|
debug_print(srtp_mod_sha1, "(update) not running srtp_sha1_core()", NULL);
|
|
|
|
for (i = ctx->octets_in_buffer;
|
|
i < (ctx->octets_in_buffer + octets_in_msg); i++) {
|
|
buf[i] = *msg++;
|
|
}
|
|
ctx->octets_in_buffer += octets_in_msg;
|
|
octets_in_msg = 0;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* srtp_sha1_final(ctx, output) computes the result for ctx and copies it
|
|
* into the twenty octets located at *output
|
|
*/
|
|
|
|
void srtp_sha1_final (srtp_sha1_ctx_t *ctx, uint32_t *output)
|
|
{
|
|
uint32_t A, B, C, D, E, TEMP;
|
|
uint32_t W[80];
|
|
int i, t;
|
|
|
|
/*
|
|
* process the remaining octets_in_buffer, padding and terminating as
|
|
* necessary
|
|
*/
|
|
{
|
|
int tail = ctx->octets_in_buffer % 4;
|
|
|
|
/* copy/xor message into array */
|
|
for (i = 0; i < (ctx->octets_in_buffer + 3) / 4; i++) {
|
|
W[i] = be32_to_cpu(ctx->M[i]);
|
|
}
|
|
|
|
/* set the high bit of the octet immediately following the message */
|
|
switch (tail) {
|
|
case (3):
|
|
W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xffffff00) | 0x80;
|
|
W[i] = 0x0;
|
|
break;
|
|
case (2):
|
|
W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xffff0000) | 0x8000;
|
|
W[i] = 0x0;
|
|
break;
|
|
case (1):
|
|
W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xff000000) | 0x800000;
|
|
W[i] = 0x0;
|
|
break;
|
|
case (0):
|
|
W[i] = 0x80000000;
|
|
break;
|
|
}
|
|
|
|
/* zeroize remaining words */
|
|
for (i++; i < 15; i++) {
|
|
W[i] = 0x0;
|
|
}
|
|
|
|
/*
|
|
* if there is room at the end of the word array, then set the
|
|
* last word to the bit-length of the message; otherwise, set that
|
|
* word to zero and then we need to do one more run of the
|
|
* compression algo.
|
|
*/
|
|
if (ctx->octets_in_buffer < 56) {
|
|
W[15] = ctx->num_bits_in_msg;
|
|
} else if (ctx->octets_in_buffer < 60) {
|
|
W[15] = 0x0;
|
|
}
|
|
|
|
/* process the word array */
|
|
for (t = 16; t < 80; t++) {
|
|
TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
|
|
W[t] = S1(TEMP);
|
|
}
|
|
|
|
A = ctx->H[0];
|
|
B = ctx->H[1];
|
|
C = ctx->H[2];
|
|
D = ctx->H[3];
|
|
E = ctx->H[4];
|
|
|
|
for (t = 0; t < 20; t++) {
|
|
TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 40; t++) {
|
|
TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 60; t++) {
|
|
TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 80; t++) {
|
|
TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
|
|
ctx->H[0] += A;
|
|
ctx->H[1] += B;
|
|
ctx->H[2] += C;
|
|
ctx->H[3] += D;
|
|
ctx->H[4] += E;
|
|
|
|
}
|
|
|
|
debug_print(srtp_mod_sha1, "(final) running srtp_sha1_core()", NULL);
|
|
|
|
if (ctx->octets_in_buffer >= 56) {
|
|
|
|
debug_print(srtp_mod_sha1, "(final) running srtp_sha1_core() again", NULL);
|
|
|
|
/* we need to do one final run of the compression algo */
|
|
|
|
/*
|
|
* set initial part of word array to zeros, and set the
|
|
* final part to the number of bits in the message
|
|
*/
|
|
for (i = 0; i < 15; i++) {
|
|
W[i] = 0x0;
|
|
}
|
|
W[15] = ctx->num_bits_in_msg;
|
|
|
|
/* process the word array */
|
|
for (t = 16; t < 80; t++) {
|
|
TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
|
|
W[t] = S1(TEMP);
|
|
}
|
|
|
|
A = ctx->H[0];
|
|
B = ctx->H[1];
|
|
C = ctx->H[2];
|
|
D = ctx->H[3];
|
|
E = ctx->H[4];
|
|
|
|
for (t = 0; t < 20; t++) {
|
|
TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 40; t++) {
|
|
TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 60; t++) {
|
|
TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
for (; t < 80; t++) {
|
|
TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
|
|
E = D; D = C; C = S30(B); B = A; A = TEMP;
|
|
}
|
|
|
|
ctx->H[0] += A;
|
|
ctx->H[1] += B;
|
|
ctx->H[2] += C;
|
|
ctx->H[3] += D;
|
|
ctx->H[4] += E;
|
|
}
|
|
|
|
/* copy result into output buffer */
|
|
output[0] = be32_to_cpu(ctx->H[0]);
|
|
output[1] = be32_to_cpu(ctx->H[1]);
|
|
output[2] = be32_to_cpu(ctx->H[2]);
|
|
output[3] = be32_to_cpu(ctx->H[3]);
|
|
output[4] = be32_to_cpu(ctx->H[4]);
|
|
|
|
/* indicate that message buffer in context is empty */
|
|
ctx->octets_in_buffer = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|