89 lines
2.4 KiB
C
89 lines
2.4 KiB
C
|
/* $Id$ */
|
||
|
/*
|
||
|
* Copyright (C) 2008-2011 Teluu Inc. (http://www.teluu.com)
|
||
|
* Copyright (C) 2003-2008 Benny Prijono <benny@prijono.org>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
#ifndef __PJ_COMPAT_HIGH_PRECISION_H__
|
||
|
#define __PJ_COMPAT_HIGH_PRECISION_H__
|
||
|
|
||
|
|
||
|
#if defined(PJ_HAS_FLOATING_POINT) && PJ_HAS_FLOATING_POINT != 0
|
||
|
/*
|
||
|
* The first choice for high precision math is to use double.
|
||
|
*/
|
||
|
# include <math.h>
|
||
|
typedef double pj_highprec_t;
|
||
|
|
||
|
# define PJ_HIGHPREC_VALUE_IS_ZERO(a) (a==0)
|
||
|
# define pj_highprec_mod(a,b) (a=fmod(a,b))
|
||
|
|
||
|
#elif defined(PJ_HAS_INT64) && PJ_HAS_INT64 != 0
|
||
|
/*
|
||
|
* Next choice is to use 64-bit arithmatics.
|
||
|
*/
|
||
|
typedef pj_int64_t pj_highprec_t;
|
||
|
|
||
|
#else
|
||
|
# warning "High precision math is not available"
|
||
|
|
||
|
/*
|
||
|
* Last, fallback to 32-bit arithmetics.
|
||
|
*/
|
||
|
typedef pj_int32_t pj_highprec_t;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* @def pj_highprec_mul
|
||
|
* pj_highprec_mul(a1, a2) - High Precision Multiplication
|
||
|
* Multiply a1 and a2, and store the result in a1.
|
||
|
*/
|
||
|
#ifndef pj_highprec_mul
|
||
|
# define pj_highprec_mul(a1,a2) (a1 = a1 * a2)
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* @def pj_highprec_div
|
||
|
* pj_highprec_div(a1, a2) - High Precision Division
|
||
|
* Divide a2 from a1, and store the result in a1.
|
||
|
*/
|
||
|
#ifndef pj_highprec_div
|
||
|
# define pj_highprec_div(a1,a2) (a1 = a1 / a2)
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* @def pj_highprec_mod
|
||
|
* pj_highprec_mod(a1, a2) - High Precision Modulus
|
||
|
* Get the modulus a2 from a1, and store the result in a1.
|
||
|
*/
|
||
|
#ifndef pj_highprec_mod
|
||
|
# define pj_highprec_mod(a1,a2) (a1 = a1 % a2)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @def PJ_HIGHPREC_VALUE_IS_ZERO(a)
|
||
|
* Test if the specified high precision value is zero.
|
||
|
*/
|
||
|
#ifndef PJ_HIGHPREC_VALUE_IS_ZERO
|
||
|
# define PJ_HIGHPREC_VALUE_IS_ZERO(a) (a==0)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#endif /* __PJ_COMPAT_HIGH_PRECISION_H__ */
|
||
|
|